Name:				
Instruct	or.			

Math 10560, Practice Exam 3 April 16, 2025

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLE	ASE MARK	YOUR AN	SWERS WITH	I AN X, not a	a circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)
11.	(a)	(b)	(c)	(d)	(e)
12.	(a)	(b)	(c)	(d)	(e)

Please do NOT	write in this box.
Multiple Choice	
13.	
14.	
15.	
Total	

Name: Instructor:

Multiple Choice

1.(7 pts.) The series

$$\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$$

- (a) converges absolutely.
- (b) diverges because the terms alternate.
- diverges even though $\lim_{n\to\infty} \frac{(-1)^{n+1}}{\sqrt{n}} = 0.$ (c)
- diverges because $\lim_{n\to\infty} \frac{(-1)^{n+1}}{\sqrt{n}} \neq 0$. (d)
- (e) does not converge absolutely but does converge conditionally.

2.(7 pts.) Use Comparison Tests to determine which one of the following series is divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{n}{n+1} \left(\frac{1}{2}\right)^n$$
 (b) $\sum_{n=1}^{\infty} \frac{n^2-1}{n^3+100}$ (c) $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}+1}$

(b)
$$\sum_{n=1}^{\infty} \frac{n^2 - 1}{n^3 + 100}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}} + 1}$$

(d)
$$\sum_{n=1}^{\infty} 7\left(\frac{5}{6}\right)^n$$
 (e) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 8}$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 8}$$

3.(7 pts.) Consider the following series

(I)
$$\sum_{n=1}^{\infty} \left(\frac{2n^2+7}{n^2+1}\right)^n$$
 (II) $\sum_{n=2}^{\infty} \frac{2^{1/n}}{n-1}$ (III) $\sum_{n=1}^{\infty} \frac{n!}{e^n}$

(II)
$$\sum_{n=2}^{\infty} \frac{2^{1/n}}{n-1}$$

$$(III) \quad \sum_{n=1}^{\infty} \frac{n!}{e^n}$$

Which of the following statements is true?

- (a) (I) converges, (II) diverges, and (III) converges.
- They all converge. (b)
- They all diverge. (c)
- (I) diverges, (II) diverges, and (III) converges. (d)
- (I) converges, (II) diverges, and (III) diverges. (e)

4.(7 pts.) Which series below conditionally converges?

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n^3}}$$

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n^3}}$ (c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}e^n}{\sqrt{n}}$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$$
 (e) $\sum_{n=1}^{\infty} (-1)^{n-1}$

(e)
$$\sum_{n=1}^{\infty} (-1)^{n-1}$$

Name: ______Instructor:

5.(7 pts.) Consider the following series;

(I)
$$\sum_{n=1}^{\infty} \left(\frac{\sqrt{n}+1}{2n+1}\right)^n$$
 (II) $\sum_{n=2}^{\infty} \frac{(-1)^n 2^n \sqrt{n}}{(n-2)!}$

Which of the following is **true**?

- (a) Both of the series diverge.
- (b) Both of the series converge.
- (c) (I) converges and (II) diverges.
- (d) (I) diverges and (II) converges.
- (e) The ratio test applied to (II) is inconclusive.

6.(7 pts.) Which series below is the MacLaurin series (Taylor series centered at 0) for $\frac{x^2}{1+x}$?

(a)
$$\sum_{n=0}^{\infty} (-1)^n x^{n+2}$$

(b)
$$\sum_{n=0}^{\infty} (-1)^n x^{2n}$$

(c)
$$\sum_{n=0}^{\infty} \frac{x^{n+2}}{n+2}$$

(d)
$$\sum_{n=2}^{\infty} \frac{(-1)^n x^{2n-2}}{n!}$$

$$(e) \quad \sum_{n=0}^{\infty} x^{2n+2}$$

Name: _____ Instructor:

7.(7 pts.) Which series below is a power series for $\cos(\sqrt{x})$?

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n-\frac{1}{2}}}{(2n)!}$$

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{(2n+1)!}$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n^2 + 1}$$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \sqrt{x}^n}{(2n)!}$$

(e)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{(2n)!}$$

8.(7 pts.) Calculate

$$\lim_{x \to 0} \frac{\sin(x^3) - x^3}{x^9}.$$

Hint: Without MacLaurin series this may be a long problem.

- (a) $\frac{9}{7}$
- $(b) \quad 0$
- (c) $-\frac{1}{6}$ (d) ∞ (e) $\frac{7}{9}$

Instructor:

9.(7 pts.) Find a power series representation for the function $f(x) = \ln(1-x^2)$. **Hint:** $\frac{d}{dx} \ln{(1-x^2)} = \frac{-2x}{1-x^2}$

(a)
$$\sum_{n=0}^{\infty} (-2)^n x^{2n}$$

(a)
$$\sum_{n=0}^{\infty} (-2)^n x^{2n}$$
 (b) $\sum_{n=0}^{\infty} (-2)(2n+1)x^{2n}$ (c) $\sum_{n=0}^{\infty} \frac{(-2)^n x^{2n+2}}{2n+2}$

(c)
$$\sum_{n=0}^{\infty} \frac{(-2)^n x^{2n+2}}{2n+2}$$

(d)
$$\sum_{n=0}^{\infty} \frac{(-2)x^{2n+2}}{2n+2}$$
 (e)
$$\sum_{n=0}^{\infty} \frac{(-2)^n x^{2n+1}}{2n+1}$$

(e)
$$\sum_{n=0}^{\infty} \frac{(-2)^n x^{2n+1}}{2n+1}$$

10.(7 pts.) Consider the function f(x) defined as

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{3^n n!}, -\infty < x < \infty.$$

Which of the following statements is true?

(a)
$$\int_0^1 f(x)dx = \sum_{n=0}^\infty \frac{(-1)^{n+1}}{3^{n+1}(n+1)!}$$

(a)
$$\int_0^1 f(x)dx = \sum_{n=0}^\infty \frac{(-1)^{n+1}}{3^{n+1}(n+1)!}$$
 (b)
$$\int_0^1 f(x)dx = \left(\sum_{n=0}^\infty \frac{(-1)^n}{3^n(n+1)!}\right) - 1$$

(c)
$$\int_0^1 f(x)dx = \sum_{n=0}^\infty \frac{(-1)^n}{3^n(n+1)!}$$

(c)
$$\int_0^1 f(x)dx = \sum_{n=0}^\infty \frac{(-1)^n}{3^n(n+1)!}$$
 (d)
$$\int_0^1 f(x)dx = \left(\sum_{n=0}^\infty \frac{(-1)^{n+1}}{3^n n!}\right) - 1$$

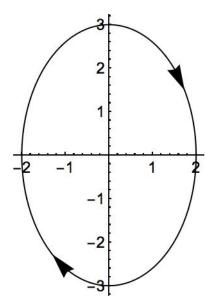
(e)
$$\int_0^1 f(x)dx = \sum_{n=0}^\infty \frac{(-1)^n}{3^n n!}$$

Name: _____

Instructor:

11.(7 pts.) What is the fourth Taylor polynomial, $T_4(x)$, for $\cos(2x)$ with center $a = \pi$?

(a)
$$1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4$$


(b)
$$1 - \frac{1}{2!}(x - \pi)^2 + \frac{1}{4!}(x - \pi)^4$$

(c)
$$1 - 2(x - \pi)^2 + \frac{2}{3}(x - \pi)^4$$

(d)
$$1 + 4(x - \pi)^2 + 16(x - \pi)^4$$

(e)
$$1 - 4(x - \pi)^2 + 16(x - \pi)^4$$

12.(7 pts.)

The graph of the parametric curve shown above is the graph of which of the following parametric equations?

(a)
$$x(t) = 3\cos(t), y(t) = 2\sin(t), 0 \le t \le 2\pi.$$

(b)
$$x(t) = 2\cos(t), y(t) = 3\sin(t), 0 \le t \le 2\pi.$$

(c)
$$x(t) = 2\sin(t), y(t) = 3\cos(t), 0 \le t \le 2\pi.$$

(d)
$$x(t) = \frac{3}{2}\sin(t), y(t) = \cos(t), 0 \le t \le 2\pi.$$

(e)
$$x(t) = 3\sin(t), y(t) = 2\cos(t), 0 \le t \le 2\pi.$$

Name:	
Instructor:	

Partial Credit

You must show your work on the partial credit problems to receive credit!

 $\mathbf{13.}(12 \text{ pts.})$ Find the radius of convergence and interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} (x-3)^n$$

Remark: The correct answer with no justification is worth 2 points.

Name:			
Instruct	or:		

14. (12 pts.)

(a) Show that

$$\sum_{n=0}^{\infty} (-1)^n x^{2n} = \frac{1}{1+x^2}$$

provided that |x| < 1.

(b) Find

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)(\sqrt{3})^{2n+1}}.$$

(Hint: First use term-by-term integration on the series in part (a).)

Name: ______Instructor:

15. (6 pts.) Please circle "TRUE" if you think the statement is true, and circle "FALSE" if you think the statement is False.

(a)(1 pt. No Partial credit) The series $\sum_{n=1}^{\infty} \frac{2^n}{3^n}$ converges by the nth root test.

TRUE FALSE

(b)(1 pt. No Partial credit) The series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.

TRUE FALSE

(c))(1 pt. No Partial credit) The first three terms of the power series $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n+3)!}$ are given by $1 + \frac{x^2}{2!} + \frac{x^4}{4!}$

TRUE FALSE

(d))(1 pt. No Partial credit) If $f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{2n}$, then $f''(0) = \frac{1}{4}$

TRUE FALSE

(e))(1 pt. No Partial credit) The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ diverges.

TRUE FALSE

(f))(1 pt. No Partial credit) $\cos(x) = \sum_{n=0}^{\infty} \frac{x^n}{(2n)!}$, for all values of x.

TRUE FALSE

Name:		
Instructor:	ANSWERS	

Math 10560, Practice Exam 3 April 16, 2025

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

VLIU WII	11 111 11, 1100 a	Circle:
(c)	(d)	(●)
(c)	(d)	(e)
(•)	(d)	(e)
(c)	(•)	(e)
(c)	(d)	(e)
(c)	(d)	(e)
(c)	(d)	(•)
(•)	(d)	(e)
(c)	(ullet)	(e)
(●)	(d)	(e)
(●)	(d)	(e)
(ullet)	(d)	(e)
	(c) (c) (c) (c) (c) (c) (c) (c) (o) (o) (o)	(c) (d) (•) (d) (c) (•) (c) (d) (c) (d) (c) (d) (c) (d) (o) (d) (o) (d) (o) (d)

Please do NOT	write in this box.
Multiple Choice	
13.	
14.	
15.	
Total	